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Abstract

We examine the cosmology and hierarchy of scales in models with branes

immersed in a five-dimensional curved spacetime subject to radion stabiliza-

tion. When the radion field is time-independent and the inter-brane spacing

is stabilized, the universe can naturally find itself in the radiation-dominated

epoch. This feature is independent of the form of the stabilizing potential.

We recover the standard Friedmann equations without assuming a specific

form for the bulk energy-momentum tensor. In the models considered, if the

observable brane has positive tension, a solution to the hierarchy problem

requires the presence of a negative tension brane somewhere in the bulk. We

find that the string scale can be as low as the electroweak scale. In the sit-

uation of self-tuning branes where the bulk cosmological constant is set to

zero, the brane tensions have hierarchical values. In the case of a polynomial

stabilizing potential no new hierarchy is created.
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I. Introduction. It has recently been realized that the string scale can be much lower
than the Planck scale and even close to the electroweak scale [1]. A low string scale provides
new avenues on solving the hierarchy problem [2,3]. The argument resides in the fact that a
low string scale (MX) may result in the apparent size of the Planck scale (MP l) due to the
existence of a large volume (Rn) of compact extra dimensions, M2

P l ∼ Mn+2
X Rn [2]. Such a

scenario may lead to a rich phenomenology at low energies and is thus testable at collider
experiments [4].

Recently, a model involving just one extra dimension with a background AdS5 metric
was proposed by Randall and Sundrum [3] (see also Ref. [5]). In this scenario, two branes
(one with positive tension and the other with negative tension) are located at the fixed
points of an S1/Z2 orbifold in a bulk with negative cosmological constant. An exponential
hierarchy between the physical scales on the two branes is generated due to the curved
spacetime, providing an explanation for the large hierarchy between the weak and Planck
scales. The model is amenable to a holographic interpretation motivated by string theories
[6]. However, the Randall-Sundrum model has some drawbacks. First, a perfect fine-tuning
among the brane tensions and the bulk cosmological constant is needed to guarantee a
static solution for the warped metric of spacetime. Mechanisms for stabilizing the brane
locations via interactions between a bulk scalar field (called the radion) and the branes
were suggested in [7] and elaborated in [8], where an elegant solution that accounts for
the back-reaction of the scalar profile on the geometry is outlined. An overall fine-tuning
equivalent to setting the four-dimensional cosmological constant to zero is still present.
Second, it was found that the brane world may not lead to the standard cosmology [9,10].
In particular, the Hubble parameter H was found to be proportional to the matter density
ρ [10], in contradiction with the usual H ∼ √

ρ behavior. Although this can be remedied
by a fine-tuned cancellation between the brane tension and the bulk cosmological constant
[11], only with a negative energy density on the observable brane is the standard cosmology
recovered [12]. Much attention has been devoted to studying cosmology without an explicit
stabilization mechanism [13]. The connection between radion stabilization and cosmology
was explored in [12,14,15], and the standard cosmology can be obtained if the radion is
time-dependent [12]. There have been attempts to modify the Randall-Sundrum model
so that the observable brane has positive tension [16–19], since the localization of matter
and gauge fields on positive tension branes is well understood in string theory. An initial
study with two positive tension branes was carried out [16], incorporating localized gravity
in a noncompact AdS5 geometry [20]. The necessary hierarchy can be generated between
the Planck and electroweak scales by placing the hidden and observable branes at specific
locations in the infinite dimension. We will refer to this as the Lykken-Randall model.

In this letter we examine the cosmology and hierarchy in models with radion stabilization.
We shall adopt the formalism of Ref. [8] to stabilize the brane separation. We call this the
Solution Generating Technique. We generalize it to the case of branes with arbitrary tensions
and no relation between the metrics on either side of the branes. Using this technique we
study the cosmology resulting from radion stabilization and find a cancellation between
the bulk cosmological constant and the brane tension. This approach is rather different in
philosophy from the one adopted in Refs. [14,15,19], where the bulk energy-momentum tensor
extracted from the linearized field equations is chosen specifically to get the conventional
cosmology. We obtain the important result that the stabilization of the inter-brane spacing
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can naturally lead to the cosmology of the radiation-dominated universe. Specifically, this
is a consequence of requiring consistency in the equation of motion of the radion before and
after perturbing the solutions by placing matter energy density on the observable brane.
We argue that to obtain the complete evolution of our universe, a time-dependence of the
radion field on the brane should be introduced. We speculate on the existence of some new
dynamics that causes the transition from one epoch to the next.

Guided by cosmology, we explore the consequences on the hierarchy between the Planck
and electroweak scales. As concrete examples, we study two classes of models. The first is
the “self-tuning” model, motivated by recent attempts to solve the cosmological constant
problem [21]. A dilaton-like coupling of a bulk scalar field with a brane was shown to result
in a vanishing bulk cosmological constant. The result persists irrespective of the tension on
the brane. This feature is referred to as self-tuning. The other model involves a Higgs-like
radion potential, similar to that in [7]. In both models, the cosmology on the observable
brane is independent of the configuration of branes and the potential that leads to radion
stabilization. All that is required is some stabilizing potential and that the observable brane
has positive tension. To generate the hierarchy of scales, at least one hidden brane with
negative tension is required. The latter cannot be positioned at an orbifold fixed point.

The self-tuning brane model has the following properties:

(i) The model illustrates the unique minimal configuration from which the hierarchy of
scales can be obtained without fine-tuning. There are two positive tension branes (one
of which is the observable brane), and one negative tension brane. The values of the
brane tensions become hierarchical.

(ii) A dilatonic coupling between the branes and the bulk stabilizes the inter-brane spac-
ings. Thus the radion may be identified with the dilaton.

(iii) The same coupling ensures self-tuning of the branes to be flat and the bulk cosmological
constant to be zero. The tree-level contribution to the four-dimensional cosmological
constant is eliminated. We will truncate the space to avoid curvature singularities.

The model with a Higgs-like radion potential possesses the following properties:

(i) The minimal set-up to generate the scale hierarchy requires one positive tension ob-
servable brane and one negative tension hidden brane.

(ii) The extra dimension is linearly infinite with finite proper volume.

(iii) The radion field is unbounded above and leads to the bulk cosmological constant being
unbounded below.

In Section II we present the Solution Generating Technique. Section III is devoted to
studying the cosmology in a general setting. In Section IV we demonstrate a realization
of a Lykken-Randall-like model with self-tuning branes. In Section V we perform a similar
analysis but with a polynomial superpotential. We conclude in Section VI.

II. Solution Generating Technique. It is possible to use a gauged supergravity-
inspired approach to reduce the nonlinear classical field equations of brane models with
scalar-tensor gravity to a system of decoupled first order differential equations [8]. Using
the technique of [8], the brane spacing can be stabilized. We assume the scalar field to
be static to prevent the four-dimensional Planck mass from being time-dependent. The
formalism is independent of whether the fifth dimension is compact or noncompact. We
shall present the arguments for the case of a noncompact dimension.
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V0

Λ0 (W0)

V1 V2

Λ1 (W1) Λ2 (W2) Λ3 (W3)

y0=0 y1 y2

FIG. 1. The configuration of branes in the bulk. Vi is the tension of the brane at yi , Λi is

the cosmological constant in the slice of AdS5 between yi−1 and yi and Wi is the corresponding

superpotential.

We assume the presence of three 3-branes in the space (−∞,∞), at y0 = 0 , y1 and
y2 with the observable brane located at y0 . We will refer to the branes at y1 and y2 as
hidden branes. The four-dimensional metric on the brane labelled by its position yi is
g(i)

µν(x
µ) ≡ gµν(x

µ, y = yi) , where gAB is the five-dimensional metric and A, B = 0, 1, 2, 3, 5
and µ, ν = 0, 1, 2, 3. We use the metric signature (−, +, +, +, +). The five-dimensional
gravitational action including a scalar field φ(y) is S = SGravity + SBrane with

SGravity =
∫

d4x dy
√−g{ 1

2 κ2
R − 1

4 κ2
∂Aφ ∂Aφ − Λ(φ)} , (1)

SBrane = −
2
∑

i=0

∫

d4x dy
√

−g(i) Vi(φ) δ(y − yi) , (2)

where κ2 = 8 π G
(5)
N = M−3

X is the five-dimensional coupling constant of gravity, MX is
the Planck scale in five dimensions, R is the curvature scalar and Vi(φi) is the tension of
the brane at yi. Λ(φ) is the potential of the field φ in the bulk and is interpreted as the
cosmological constant although it has a φ-dependence. We allow it to be discontinuous at
the branes, but continuous in each section. We write Λ(φ) as Λ0(φ) if y < 0 , Λ1(φ) if
0 < y < y1 as Λ2(φ) if y1 < y < y2 and Λ3(φ) if y > y2 (see Fig. 1).

The five-dimensional Einstein equations arising from the above action are

GAB ≡ RAB − 1

2
gABR = κ2 TAB =

1

2
(∂Aφ ∂Bφ − 1

2
gAB (∂φ)2) − κ2 gABΛ(φ)

−κ2
2
∑

i=0

Vi(φ)

√

√

√

√

g(i)

g
g(i)

µν δµ
Aδν

B δ(y − yi) , (3)

where RAB is the five-dimensional Ricci tensor. The most general five-dimensional metric
that respects four-dimensional Poincaré symmetry is

ds2 = e2 A(y) ηµν dxµdxν + (dy)2 . (4)
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The factor e2 A(y) is commonly called a “warp factor”. The equation of motion of φ is

φ′′ + 4 A′ φ′ = 2 κ2

(

∂Λ(φ)

∂φ
+

2
∑

i=0

∂Vi(φ)

∂φ
δ(y − yi)

)

, (5)

and the Einstein equations can be written as

A′′ = −1

6
φ′2 − κ2

3

2
∑

i=0

Vi(φ) δ(y − yi) , A′2 =
1

24
φ′2 − κ2

6
Λ(φ) . (6)

Here a prime denotes a derivative with respect to y. The jumps corresponding to the presence
of the branes are

A′
∣

∣

∣

yi+ǫ

yi−ǫ
= −κ2

3
Vi(φi) , φ′

∣

∣

∣

yi+ǫ

yi−ǫ
= 2 κ2∂Vi(φ)

∂φ

∣

∣

∣

∣

∣

φ=φi

, (7)

where φi ≡ φ(yi).
Let W (φ) be any sectionally continuous function (which we call the superpotential), with

sectional functions Wi(φ) defined analogous to Λi(φ) (see Fig. 1). Taking

2 κ2 Λ(φ) =
1

2

(

∂W (φ)

∂φ

)2

− 1

3
W (φ)2 , (8)

it is possible to show that a solution to the equations,

φ′ =
∂W (φ)

∂φ
, A′ = −1

6
W (φ) , (9)

subject to the constraints,

W (φ)
∣

∣

∣

yi+ǫ

yi−ǫ
= 2 κ2Vi(φi) ,

∂W (φ)

∂φ

∣

∣

∣

∣

∣

yi+ǫ

yi−ǫ

= 2 κ2∂Vi(φ)

∂φ

∣

∣

∣

∣

∣

φ=φi

(10)

is also a solution to the system of equations (5 − 7). By solving Eq. (9) in the bulk and
applying boundary conditions on the branes, we can determine the locations of the branes
and hence their separation. Note that up to an arbitrary function

∑∞
n=2 γn (φ − φi)

n , the
brane tension is completely determined by the superpotential and the value of φ on the
brane,

2 κ2 Vi(φ) = Wi+1(φi) − Wi(φi) +

(

∂

∂φ
(Wi+1(φ) − Wi(φ))

) ∣

∣

∣

∣

∣

φ=φi

(φ − φi) . (11)

The solution involves fine-tuning even though it appears not to be the case. There are six
constraints arising from the jump conditions on the three branes, but only five integration
constants; the equations of motion and the jumps depend only upon A′(y) and A′′(y) thereby
rendering the value of A on one of the branes irrelevant [8].

III. Cosmology: General Considerations. Our starting point is the most gen-
eral five-dimensional metric that preserves three-dimensional rotational and translational
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invariance. Thus, we adopt the cosmological principle of isotropy and homogeneity on the
observable brane. However, y-dependence is maintained in the metric tensor since isotropy
is broken in the fifth dimension due to the presence of branes. We consider the metric to be
of the form

ds2 = −n2(τ, y)dτ 2 + a2(τ, y)dx2 + b2(τ, y)dy2. (12)

The Einstein tensor for this metric is given by [10],

G00 = 3

{

ȧ

a

(

ȧ

a
+

ḃ

b

)

− n2

b2

(

a′′

a
+

a′

a

(

a′

a
− b′

b

))}

, (13)

Gij =
a2

b2
δij

{

a′

a

(

a′

a
+ 2

n′

n

)

− b′

b

(

n′

n
+ 2

a′

a

)

+ 2
a′′

a
+

n′′

n

}

+
a2

n2
δij

{

ȧ

a

(

− ȧ

a
+ 2

ṅ

n

)

− 2
ä

a
+

ḃ

b

(

−2
ȧ

a
+

ṅ

n

)

− b̈

b

}

, (14)

G05 = 3

(

n′

n

ȧ

a
+

a′

a

ḃ

b
− ȧ′

a

)

, (15)

G55 = 3

{

a′

a

(

a′

a
+

n′

n

)

− b2

n2

(

ȧ

a

(

ȧ

a
− ṅ

n

)

+
ä

a

)

}

. (16)

where a dot denotes a derivative with respect to τ . Note that the time-independent solution
of the previous section corresponds to a(τ, y) = n(τ, y) = eA(y) and b(τ, y) = 1. We will
maintain the assumption that the stabilizing potential is static, ḃ = 0 , and without loss of
generality we set b = 1. The energy-momentum tensor can be decomposed into two parts:
a contribution from fields on the observable brane, T̃A

B = diag(−ρ0, p0, p0, p0, 0) δ(y) , and
the contribution ŤA

B of all other sources, i.e. bulk fields and matter on the other brane:
TA

B = T̃A
B + ŤA

B . In the time-independent case, T̃A
B = diag(−V0,−V0,−V0,−V0, 0) δ(y) .

The jump conditions on the observable brane are [10]

[a′]

a0

= −κ2

3
ρ0 and

[n′]

n0

=
κ2

3
(3 p0 + 2 ρ0) , (17)

where [a′] = a′(+ǫ) − a′(−ǫ) , and functions with the subscript 0 are evaluated on the
observable brane. On taking the jump of the (0,5) component of Einstein’s equations, these
conditions lead to the energy conservation equation,

ρ̇0 + 3(p0 + ρ0)
ȧ0

a0
= 0 . (18)

which is independent of ḃ. Taking the jump of the (5,5) component of Einstein’s equations,
we get

3 p0
〈a′〉
a0

= ρ0
〈n′〉
n0

+
[Ť55]

a0

, (19)

where
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2 〈a′〉 = a′(+ǫ) + a′(−ǫ) . (20)

We choose n0 = 1, which amounts to identifying τ with time in conventional cosmology.
Evaluating the (5,5) component of Einstein’s equations on either side of the observable
brane and adding, we obtain

(

ȧ0

a0

)2

+
ä0

a0
= −κ4

36
ρ0 (ρ0 + 3 p0) −

κ2

3
〈Ť55〉 +

〈a′〉2
a2

0

(1 +
3 p0

ρ0
) − 〈a′〉 [Ť55]

ρ0 a2
0

. (21)

Usually, motivated by Hořava-Witten supergravity [22], a Z2 symmetry is imposed on the
solutions. We simplify the above result by requiring the solutions to Einstein’s equations
to obey a “Z2 symmetry” in the neighborhood of the observable brane. By this we simply
mean

W (φ(+ǫ)) = −W (φ(−ǫ)) , (22)

because it leads to the warp factor being symmetric on either side of the observable brane.
By a contextual abuse of terminology, we will call this a “local Z2 symmetry”. (Of course,
in no sense are we gauging the symmetry). To create a distinction, we will reserve the bold
font for the “global” Z2 symmetry. We are therefore left with the following Friedmann-like
equation:

(

ȧ0

a0

)2

+
ä0

a0

= −κ4

36
ρ0 (ρ0 + 3 p0) −

κ2

3
〈Ť55〉 , (23)

derived in [10]. Let us emphasize the two assumptions on which our results will hinge. They
are:

(i) The extra dimension is assumed to be stable before studying cosmology.

(ii) The solutions satisfy a Z2 symmetry in the immediate neighborhood of the observable
brane, Eq. (22).

In finding the static solution of the previous section, we ignored the matter energy densities
on the branes by assuming that they are negligible in comparison to the brane tensions. We
now include their contribution as a perturbation to the “matter-less” solution. Thus, we
can study the resulting cosmology by making the ansatz

ρ0 = ρ + V0 , p0 = p − V0 , (24)

and Eq. (23) becomes

(

ȧ0

a0

)2

+
ä0

a0
=

κ4

18
V 2

0 − 1

18
〈W (φ0)

2〉 +
κ4

36
V0 (ρ − 3 p) − κ4

36
ρ (ρ + 3 p) . (25)

Here we have used

κ2 〈Ť55〉 =
1

6
〈W (φ0)

2〉 , (26)

which is obtained by inserting (8) and (9) into (3). Notice that W (φ0) is proportional to
A′(0) and is therefore not well-defined. However, 〈W (φ0)

2〉 is well-defined. On account of
the local Z2 symmetry and Eq. (11), we have
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W (φ(+ǫ))2 = W (φ(−ǫ))2 = κ4 V 2
0 . (27)

The definition of 〈W (φ0)
2〉 is analogous to Eq. (20), and we obtain

〈W (φ0)
2〉 = κ4 V 2

0 . (28)

This result relies heavily on the existence of the local Z2 symmetry. The first two terms on
the right hand side of Eq. (25) cancel out and we are left with

(

ȧ0

a0

)2

+
ä0

a0

=
κ4

36
V0 (ρ − 3 p) − κ4

36
ρ (ρ + 3 p) . (29)

The leading term on the right-hand side reproduces the standard cosmology if we make the
identification, κ4V0 = 6/M2

P l. It is essential for the observable brane to possess positive ten-
sion to arrive at the correct Friedmann equations in spite of an explicit radion stabilization.
Furthermore, a specific form of the bulk energy-momentum tensor was not chosen to imple-
ment the cancellation. Beyond the conventional fine-tuning one does not need additional
machinery to obtain the usual cosmology.

In introducing the perturbation (24), it is no longer obvious that the solutions remain
consistent. Let us consider the equation of motion of φ. On the observable brane it is

φ′′ +

(

3
a′

a
+

n′

n

)

φ′ = 2 κ2 ∂

∂φ
(Λ(φ) + V0(φ)) , (30)

where all quantities are evaluated at y0. We started with just tension on the branes and
demanded that the radion stabilize the configuration of branes. Having obtained this static
solution we then proceeded to consider the effect of matter on the observable brane. Let us
require that the positions of the branes be unchanged by appealing to the stability of such
a scenario. This is equivalent to saying that φ and Λ(φ) are unchanged before and after the
introduction of the matter energy density. Then consistency requires,

(

3
a′

a
+

n′

n

)

∣

∣

∣

0 , Static
=

(

3
a′

a
+

n′

n

)

∣

∣

∣

0 , P erturbed
. (31)

Again, using the local Z2 symmetry and the jump conditions (17), we get

− κ2

2
V0 −

κ2

6
V0 = − κ2

2
(ρ + V0) +

κ2

6
(3 p + 2 ρ − V0) , (32)

which leads to the condition for a radiation-dominated (RD) universe,

ρ = 3 p . (33)

The interpretation of the above constraint is interesting. When matter on the observable
brane is radiation, the inter-brane spacing is identical to the case when there is no matter
on the brane. Conversely, when the brane location is unaffected by the matter-perturbation,
the universe is RD. This observation is consistent with the fact that the radion couples to
the trace of the energy-momentum tensor [12,15], which is zero for radiation. It may be
possible to identify the process of radion stabilization with inflation and reheating and the
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time at which the inter-brane spacing becomes stable marks the end of reheating. The RD
universe then ensues.

To study cosmology at lower temperatures, we need the radion to be time-dependent.
The radion can be written as

φ(~x, t, y) = φ(~x, t) φ(y) , (34)

the form of which encodes the requirement that the bulk remain static (so as to maintain a
non-fluctuating Planck scale). In our previous analysis we have set φ(~x, t) = 1. The Solution
Generating Technique is still applicable provided the derivatives of φ(~x, t) with respect to ~x
and t are negligible. It is conceivable that φ(~x, t) plays a role in the evolution from a RD
universe to a matter-dominated universe and is perhaps responsible for the transition to an
accelerating universe as in quintessence models [23].

IV. Self-tuning Flat Branes. In this section we study the case where the superpo-
tential takes on the form of the tree-level dilaton coupling. This will lead us to the case of
a vanishing bulk cosmological constant [21]. The resulting φ has two singularities at finite
distances on either side of the observable brane. We will describe how these singularities
can be dealt with.

Consider a superpotential of the exponential form

Wi(φ) = ωi e
−βφ , (35)

for which

12 κ2 Λi(φ) = (3 β2 − 2) ω2
i e−2βφ . (36)

For β2 = 2/3, we have the important result that Λ = 0 [21]. Henceforth, we restrict ourselves
to this choice. When we have not committed to the sign of β, we will leave it explicit in the
equations. With β2 = 2/3 the branes are flat and will remain so, independent of the matter
on them (hence the expression “self-tuning flat branes”).

As we pointed out in Sec. II, the tension on the branes is fixed by the superpotential. As
long as the tension satisfies Eq. (11), it is irrelevant what functional form it takes, i.e. the
particular form of the tension we choose is simply a calculational device with no bearing on
the physics. We take

12 κ2 Vi(φ) = (ωi+1 − ωi) e−βφ . (37)

Then it can be shown that

φ(y) =
1

β
ln[−(

2
∑

i=0

ki |y − yi| + kc y) + c] , A(y) =
1

6 β
φ(y) + h , (38)

where ki = (ωi+1 − ωi)/3 and kc = (ω0 + ω3)/3 . Here c is a constant that can be fixed by
the boundary conditions on any brane. Conventionally, the constant h is set to zero, but its
value does not affect the hierarchy of scales. Let us call the argument of the logarithm in
Eq. (38), f(y). Then,

f(y) ≡ eβφ(y) = −2

3
ωi y + ci for yi−1 ≤ y ≤ yi , (39)
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where ci is a constant of integration. Note that when ωi is positive (negative), eβφ falls (rises)
linearly. When f vanishes, φ diverges and the warp factor vanishes. The space collapses to
a point at these locations and these points can be identified with horizons. Assume that the
horizons at ymin and ymax are such that ymin < 0 and ymax > y2. We will truncate the space
at the horizons. There is much debate about the justification of this procedure if one hopes
to solve the cosmological constant problem. It has been claimed that the four-dimensional
cosmological constant vanishes only when the singularities contribute to the vacuum energy
[24]. If negative tension branes are introduced at the singularities, it is possible to set the
four-dimensional cosmological constant to zero, but not without fine-tuning [24]. Attempts
have been made to find bulk potentials such that self-tuning remains while simultaneously
removing the singularities. It has been found [25] that if the singularities are removed,
gravity is no longer localized and the four-dimensional Planck scale diverges. We will content
ourselves with having Λ = 0 as an improvement to the cosmological constant problem. We
assume the presence of some dynamics at the singularities that does not affect the global
properties of the solution and may resolve the problem of fine-tuning. So that φ be well-
defined and accommodate our assumptions, we must impose the constraint,

2
∑

i=0

ki > |kc| ⇒ ω3 > 0 iff kc < 0 , ω0 < 0 iff kc > 0 . (40)

Now we can calculate the four-dimensional Planck scale in terms of the five-dimensional
Planck scale MX ,

M2
P l = M3

X

∫

e2 A(y) dy (41)

to be

M2
P l = M3

X e2 h
[

(
1

ω1

− 1

ω0

) eφ0/β + (
1

ω2

− 1

ω1

) eφ1/β + (
1

ω3

− 1

ω2

) eφ2/β
]

. (42)

We recall that the electroweak scale (MEW ) can be generated from the five-dimensional
Planck scale MX via the square root of the warp factor [3],

MEW ≃ MX eA(0) = MX eφ0/(6 β) . (43)

Two branes geometry: Let us specialize to the case of just two branes. The formulae for
the case of three branes apply by simply dropping the terms corresponding to the extra
indices. We choose

W1(φ) = −W0(φ) = ω1 e−βφ , W2(φ) = ω2 e−βφ . (44)

As required by cosmology, W (φ)2 has a local Z2 symmetry about the observable brane.
From Eq. (37), we need to impose ω1 > 0 so that the observable brane has positive tension.
The four-dimensional Planck scale is

M2
P l = M3

X

[

2

ω1
eφ0/β + (

1

ω2
− 1

ω1
) eφ1/β

]

. (45)

From Eq. (39), one can readily see that eφ0/β > eφ1/β . Since ω0 = −ω1 < 0 , the constraint
from Eq. (40) requires ω2 > ω1 . This implies that the hidden brane has positive tension.
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y0=0 y1 y2

Observable

ymin ymax

eβφ0

eβφ1

eβφ2

FIG. 2. The profile of eβφ (solid) and the warp factor (dashed) in the case of self-tuning

branes. In regions where ωi is positive (negative), eβφ falls (rises) linearly. The brane at y1 must

have negative tension so that eβφ2 > eβφ0 .

Therefore, the second term in Eq. (45) makes a negative contribution to M2
P l. The first term

must be the dominant contribution for M2
P l > 0 and φ0/β ≫ φ1/β must be satisfied, where

“≫” implies a hierarchy of at most two orders of magnitude. We would like the fundamental
parameters MX and ωi to be roughly of the same order of magnitude to avoid a fine-tuned
hierarchy of scales. We obtain

MP l ≃ MX eφ0/(2 β) , MP l/MEW ≃ eφ0/(3 β). (46)

We need φ0/(3β) ≃ 37 to get the correct hierarchy with MP l ≃ 1019 GeV and
MEW ≃ 103 GeV. This leads to MX ≃ 10−5 GeV. Interpreting MX as the string scale
is now impossible. The difficulty arises because both the Planck and electroweak scales are
determined by the value of φ on the observable brane. Any self-tuning brane model with
only two branes shares this problem; φ will always be required to have its maximum value
on the observable brane because of the local Z2 symmetry.

Three branes geometry: We construct a model with three branes in which the Planck scale
will be generated by the value of φ on a neighboring brane. We investigate the superpotential

W1(φ) = −W0(φ) = ω1 e−βφ , W2(φ) = ω2 e−βφ , W3(φ) = ω3 e−βφ . (47)

Notice that W (φ)2 has a local Z2 symmetry. We leave the sign of the tensions of the hidden
branes unspecified for the time being. The Planck scale is given by Eq. (42) with ω0 = −ω1.
Again, from Eq. (39), eφ0/β > eφ1/β. The only way of getting eφ2/β > eφ0/β is by choosing
ω2 < 0. From Eq. (37) we can see that the brane at y1 must have negative tension. Since
there are no more branes in the bulk, so that eφ/β → 0 at ymax, we must have ω3 > 0. Thus,
the brane at y2 has positive tension. This situation calls for two hidden branes, one with
positive and the other with negative tension in a unique configuration. The configuration
of branes, the profiles of eβφ and the warp factor e2 A(y) =

√
eβφ are shown in Fig. 2. The

model resembles the “+−+” model of Ref. [17], which however is not derived by imposing
constraints from radion stabilization and has a compactification on S1/Z2 . If we assume
MX and ωi to be of the same order of magnitude and φ2/β ≫ φ1/β , φ0/β, then

11



MP l ≃ MX eφ2/(2 β) , MP l/MEW ≃ e(φ2−φ0/3)/(2 β) . (48)

To obtain the correct hierarchy we must have (φ2 − φ0/3)/(2β) ≃ 37. By choosing appro-
priate values of φ0 and φ2, we are able to generate the hierarchy between MP l and MEW

for essentially any value of MX in between. For illustration, we present two particularly
interesting examples. First, we can achieve MX ≃ MP l by taking φ2 → 0 (or any other
value that yields eφ2 ≃ O(1)), corresponding to φ0/β ≃ −220. At the other extreme, we
can obtain MX ≃ MEW by taking φ0 → 0, corresponding to φ2/β ≃ 75. We mention in
passing that the solution that leads to MX ≃ MEW is slightly less fine-tuned in terms of the
difference in |φi| than the one leading to the high energy string scale. A lighter string scale
is preferred in this sense.

A couple of points are noteworthy. The solution presented represents the unique minimal
configuration that allows for the generation of the hierarchy of scales without fine-tuning.
The negative tension brane must lie between two positive tension branes. In the case at
hand, it is not possible to place the negative tension brane at the fixed point of an orbifold.
The only possible discrete symmetry that can be imposed on R1 is Z2. If we considered
the orbifold R1/Z2 with a fixed point at y1, we would not be able to satisfy eφ2/β > eφ0/β.
Since the negative tension brane is not at an orbifold fixed point, the radion may have a
problem with positivity of energy [26]. This is an unpleasant circumstance but nevertheless,
we assume the model to be theoretically feasible. More problematic is the introduction of a
new hierarchy problem. By inspecting Eq. (37) it can be seen that due to the exponential
dependence of the brane tensions on φ , a large hierarchy is generated between the values of
the tensions for even moderately different values of φ.

V. Polynomial Superpotentials. Here we consider the type of superpotential that
leads to the stabilization mechanism suggested in [7]. In [8] it was demonstrated that a
quadratic superpotential results in the mechanism of [7]. We have studied all geometries
with two positive tension branes (with bounded and unbounded φ) and numerically scanned
the parameter space. As in the model of the previous section, we find that it is not possible
to generate the appropriate scale hierarchy with only positive tension branes. We therefore
study a model with two branes where the hidden brane has negative tension. The first
column of Table I shows our particular choice of the polynomial superpotential, which is
guided by cosmology discussions with a Z2 symmetry. For simplicity, we have multiplied y
by MX to make it dimensionless. The second and third columns of Table I present the static
solution to Einstein’s equations, where a0 is an irrelevant integration constant which we set
to zero. We find it necessary for the radion to be unbounded for y > y1. This leads to Λ(φ)
being unbounded below. This is often seen in AdS supergravity and offers no threat to the
model [8]. In the region y < 0, the radion may or may not be bounded without affecting the
hierarchy. We will choose it to be unbounded in both regions, thus making the value of φ0

a global minimum. Figure 3 illustrates the profiles of φ and A(y) in the bulk. The location
of the hidden brane is

y1 = ln

(

φ1

φ0

)
1

2

. (49)

The electroweak scale is

MEW ≃ MX eA(0) = MX e−
φ2

0

24 . (50)

12



W (φ)/MX φ(y) A(y) Region

(η − φ2) φ0 e2 |y| a0 + 1
6 η |y| − φ2

0

24 e4 |y| y < 0

−(η − φ2) φ0 e2 y a0 + 1
6 η y − φ2

0

24 e4 y 0 < y < y1

−(ξ − φ2) φ0 e2 y a0 + 1
6 η y1 + 1

6 ξ (y − y1) − φ2

0

24 e4 y y1 < y

TABLE I. The solution to Einstein’s equations in a model with a polynomial superpotential.

Observable

y0=0

φ0

y1

φ1

FIG. 3. Representative configurations of the radion (solid) and A(y) (dashed) in the case of a

quadratic superpotential. To generate the appropriate hierarchy of scales, the hidden brane at y1

is required to have negative tension.

The Planck scale is given by

(

2
MP l

MX

)2

=

(

φ2
0

12

)− ξ

12

Γ

(

ξ

12
,
φ2

1

12
,∞

)

+

(

φ2
0

12

)− η

12

[

Γ

(

η

12
,
φ2

0

12
,
φ2

1

12

)

+ Γ

(

η

12
,
φ2

0

12
,∞

)]

,

(51)

where the generalized incomplete gamma function is Γ(a, x, y) ≡ ∫ y
x ta−1 e−t dt . Consistency

conditions imposed by positivity of the tension of the observable brane and the profile of
the radion are η < φ2

0 < φ2
1 . When the correct hierarchy is generated, by far the dominant

contribution to MP l comes from the first term on the right-hand-side of Eq. (51). This term
is the integral over the space y > y1. The condition under which this integral dominates is
φ2

0 < φ2
1 < ξ. Then η < ξ , and the brane at y1 has negative tension. If we choose η > ξ ,

the brane will have positive tension, but the desired hierarchy of scales cannot be obtained.
It is not possible to place the negative tension brane at an orbifold fixed point because the
space beyond y1 is crucial for generating the scale hierarchy. We can again obtain a solution
with a string scale anywhere between MEW and MP l.

As an explicit realization that solves the hierarchy problem, consider the following choice
of parameters: η = 12 , φ2

0 = 24 , φ2
1 = 100 , ξ = 450. The largest hierarchy among these

parameters is only O(10). With the above choice, MP l ≈ 1015 MX and MEW ≈ 10−1 MX .
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VI. Conclusion. We have studied the cosmology and hierarchy in models with branes
immersed in a five-dimensional curved spacetime subject to radion stabilization. We found
that when the radion field is time-independent and the inter-brane spacing is stabilized,
consistent solutions that reproduce the conventional cosmological equations can naturally
lead to a radiation-dominated universe. This feature is independent of the form of the
stabilizing potential. The only assumption made is that the warp factor is symmetric on
either side of the observable brane.

Guided by constraints on the stabilizing superpotential imposed by cosmology, we pro-
ceeded to consider solutions to the hierarchy problem. We insisted that the observable brane
have positive tension and considered a noncompact fifth dimension. We examined two classes
of models— an exponential and a polynomial superpotential. We find that these scenarios
generically require at least one hidden brane with negative tension to get the correct hier-
archy. This brane cannot be located at the fixed point of an orbifold. In both models, the
correct hierarchy between the electroweak and Planck scales can be obtained for any value
of the string scale, including the interesting result MX ≃ MEW , without fine-tuning. The
exponential superpotential leads to the interesting case of a vanishing bulk cosmological con-
stant, referred to as a self-tuning brane model. As in [21], we needed to truncate the space
to avoid curvature singularities. In this model, generating the hierarchy of scales results in
the brane tensions becoming hierarchical. In the case of a polynomial superpotential no new
hierarchy is created.
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